Mathematics Methods Unit 3

Exponential functions

(b) Transformations

Given an exponential function as:

$$f(x) = Ab^{kx} + C$$

: As *n* approaches infinity,
$$e \approx 2.71828$$

Variations:

Expression	Euler's number expression
$(1+\frac{k}{n})^n$	e^k
$(1+\frac{1}{kn})^n$	$e^{\frac{1}{k}}$

Example 1:

Given that $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, evaluate $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{2n}$.

Example 2: Evaluate $\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^{2n}$ given that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{2n} = e^2$ and that $\lim_{n \to \infty} (1 + \frac{1}{kn})^n = e^{\frac{1}{k}}$.

(b) Derivation of Euler's number through sum of infinite series

Let
$$y = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} + \frac{1}{9!} + \frac$$

= 2.71828 (sum of first 10 terms)

Alternatively,

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$

Example 1:

Given that $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ Show that $e \approx 2.7182$ by substituting x = 1.

Example 2: Given that $e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \dots$ Deduce a general sum to infinite function that is equivalent.

3.	Non-continuous exponential decay		
		*Additional info.	
	Exponential growth	Exponential decay	
	Formula:	Formula:	
	$y = a(1+b)^t$	$y = a(1-b)^t$	
	<i>y</i> : the value after <i>t</i> ,time passed (final value)		
	a: initial value		
	b: decay factor		
	t: time passed		
	The national park estimates that there are 5,000 tigers available. As illegal deforestation and poaching is prevalent in the country. The number of tigers is expected to fall at 1.7% annually with some assumptions. What is the number of the tiger population after 2 years.		
	Example 2: Jack deposited \$1,200 into her bank account. The interest rate is 2% compounded annually. What is the amount is Jack's bank after two years?		
	Example 3: The population of rabbits is increasing at 18% every two years. Given that the initial population of rabbits is 3,000. What is the population of rabbits after six years?		
3.	Continuous exponential growth/ decay		
	Characteristics of:		
	• Exponential growth: y increases as x increases		
	• Exponential decay: y decreases as x	increases	
	Formula:		
	A	$=A_{o}e^{kt}$	
	A: the value after t, time passed (final value)		
	A _o : initial value		
	k: growth rate ($k > 0$: exponential growth, $k < 0$: exponential decay) t: time passed		

